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Abstract
We present a first-principles description for electron dynamics in crystalline SiO2 induced by an
optical field in both weak and intense regimes. We rely upon the time-dependent
density-functional theory with the adiabatic local-density approximation, and a real-space and
real-time method is employed to solve the time-dependent Kohn–Sham equation. The response
calculation to a weak field provides us with information on the dielectric function, while the
response to an intense field shows the optical dielectric breakdown. We discuss the critical
threshold for the dielectric breakdown of crystalline SiO2, in comparison with the results for
diamond.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The time-dependent density-functional theory (TDDFT) has
been proposed as a tool to describe the quantum dynamics
of electrons induced by a time-dependent external potential
at the first-principles level [1]. The TDDFT has been most
successful in the linear response regime to describe electronic
excitations [2, 3]. It has also been applied to nonlinear and
nonperturbative dynamics of electrons induced by an intense
and ultrashort laser pulse [4].

This paper is intended to present an application of the
TDDFT for electron dynamics in bulk crystal of SiO2, a typical
dielectric, induced by an optical field in both weak and intense
regimes. This is motivated by the recent experimental progress
of laser–materials interaction with intense and ultrashort
laser pulses. The key physical process is the optical
breakdown creating many electron–hole pairs [5, 6]. This is
a highly nonlinear optical process whose mechanism is not
yet fully understood [7]. The optical breakdown causes a
highly reproducible structure modification on the dielectric,
making the process quite suitable for micromachining, medical
surgery, and other technical applications [8–10].

There have been several different mechanisms proposed
for the origin of the electron–hole pairs which lead to the
breakdown. Electron avalanching is considered to be a
principal mechanism for pulses longer than a picosecond [5].

For femtosecond pulses, on the other hand, photoionization
either by a multiphoton or tunneling mechanism is expected
to become dominant. The TDDFT is capable of treating
the ionization of both multiphoton [11] and tunneling
mechanisms [12]. However, within the adiabatic local-density
approximation (ALDA), the electron–electron collisions which
cause the electron avalanching are not included. Although all
the complex mechanisms are not fully included in the TDDFT
with ALDA level, we consider it to be important to clarify to
what extent the dielectric breakdown could be quantitatively
described within the theory.

We have recently reported the first-principles calculation
for the dielectric breakdown of diamond [13]. In that work we
clearly demonstrated that the TDDFT is capable of describing
the optical dielectric breakdown on a femtosecond timescale.
In the present paper we extend our previous work to crystalline
α-SiO2 (α-quarts) for which a number of experimental reports
are available [5, 6].

The construction of the present paper is as follows. In
section 2 we present a formulation to describe laser–material
interaction for a spatially-uniform time-dependent external
field. In section 3 we discuss the response for a weak external
field which is characterized by the dielectric function. In
section 4 we show calculated results of electronic dynamics
induced by the intense and ultrashort pulse laser. In section 5 a
summary will be presented.
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2. Formalism

We here briefly recapitulate our framework to describe the
electron dynamics in a crystalline solid. A more complete
description will be found in [13, 14]. We consider electron
dynamics in an infinite periodic system under a spatially
uniform, time-dependent electric field. We thus take a limit of
long wavelength and ignore the relation between the frequency
and the wavelength of the incident laser pulse. This assumption
is valid because the wavelength is much longer than the size
of the unit cell. Since we treat the electromagnetic field
classically, we ignore the effect of the quantization such as
the electron inelastic collision accompanying photoemission.
The electron dynamics is described by the following time-
dependent Kohn–Sham (TDKS) equation:

ih̄
∂

∂ t
ψi (�r , t) = HKS(�r , t)ψi (�r , t), (1)

where HKS is the time-dependent Kohn–Sham Hamiltonian
defined by

HKS(�r, t) = 1

2m

(
�p + e

c
�Atot(t)

)2 + V̂ion

+ e2
∫

d�r ′ n(�r , t)

|�r − �r ′| + μ̂xc( �r, t), (2)

e is an elementary charge (e > 0), Vion is the
electron–ion potential, and μ̂xc(�r , t) is the exchange–
correlation potential. n(�r , t) is the electron density given
by n(�r , t) = ∑

i |ψi (�r , t)|2. We employ the norm-
conserving pseudopotential for V̂ion with the separable
approximation [15, 16]. For the exchange–correlation
potential, we use that of ALDA with the functional form given
in [17].

The time-dependent spatially uniform vector potential
�Atot(t) is composed of the vector potential of an external

laser pulse ( �Aext(t)) and that of induced polarization ( �Aind(t)),�Atot(t) = �Aext(t) + �Aind(t). The induced vector potential
satisfies

d2 �Aind(t)

dt2
= 4π

c
�j(t), (3)

where �j(t) is an electric current density averaged over the
unit cell. The macroscopic induced electric field �Find(t)
is related to the induced vector potential by �Find(t) =
−(1/c)(d �Aind(t)/dt). The vector potential of the applied laser
pulse is related to the external electric field by Aext(t) =
−c

∫
Fext(t) dt .

To calculate the electron dynamics in α-SiO2, we consider
a hexagonal unit cell including three SiO2. To represent the
orbital functions ψi (�r , t), we introduce a uniform spatial grid
in the three-dimensional non-orthogonal coordinates. For 1-
and 2-directions, a side of 9.29 au is discretized into 22 grid
points, and for the 3-direction, 10.21 au is discretized into 38.
As for the Bloch momentum, 83 �k-points are employed. We
have carefully examined the convergence of the results with
respect to these parameters. A high order finite difference
approximation is used for the Laplacian, taking 13 points for
one direction [19]. The time evolution of the wavefunction
for a short period �t is approximately calculated by the

Figure 1. The induced electric field in α-SiO2 is shown as a function
of time after the impulsive electric field is applied at t = 0.

Taylor expansion of the time evolution operator up to fourth
order [18]:

ψi (�r , t +�t) =
4∑

n=1

(i�t HKS(�r , t)/h̄)n

n! ψi (�r , t). (4)

The time step of �t = 0.02 au is used.

3. Linear response calculation

We first consider the response to a weak external field. The
responses of infinitely periodic systems to a weak, spatially
uniform external field are characterized by the dielectric
function ε(ω). As explained in [14], the dielectric function
can be calculated from the real-time evolution of the TDKS
equation. For an impulsive external field Aext(t) = A0θ(t),
we calculate the induced vector potential Aind(t) by solving
equations (3). Then the inverse dielectric function is related to
the Fourier transform of the induced electric field:

1

ε(ω)
− 1 = 1

A0

∫ ∞

0+
eiωt−γ t dAind(t)

dt
dt, (5)

where γ is a small real number.
We will apply the impulsive electric field to the 3-direction

to see the response in that direction. Figure 1 shows the
induced electric field as a function of time. The impulsive
electric field induces a coherent oscillation of electrons in the
crystal. It soon damps in less than 1 fs. This coherent motion
corresponds to the plasma oscillation.

We calculate the Fourier transform of the induced electric
field to obtain the inverse dielectric function. Figure 2 shows
the real and the imaginary parts of the dielectric function.
The solid curves show the calculated results and the dashed
curves show the measurements [20]. As discussed in [14], the
spurious plasmon peak appears at low frequency in the real-
time calculation. In order to remove it, we put Im ε−1(ω) =
0 for the frequencies below bandgap and then calculate
Re ε−1(ω) from Im ε−1(ω) employing the Kramers–Kronig
relation. The dielectric function shown in figure 2 is calculated
by this procedure.

The calculated value of the static dielectric constant in the
3-direction is 2.67. This is slightly larger than the calculation
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Figure 2. The real part (upper panel) and imaginary part (bottom
panel) of the dielectric function of α-SiO2 are shown. The solid
curves show the calculated results employing TDDFT while the
dashed curves show the measurement [20].

(2.62 in [21]) and the measured value of 2.38 [22]. The
dielectric function Re ε(ω) and Im ε(ω) looks to shift towards
a lower frequency in comparison with the measured value.
This may be because of the well-known underestimation of the
bandgap energy in the LDA.

The imaginary part Im ε(ω) shows four sharp and distinct
structures at energies of 10.3, 11.7, 14.0, and 17.3 eV. The
TDDFT calculation also shows several structures. However,
the correspondence is not accurate enough. According to the
former studies [23–25], these four peaks correspond to the
exciton excitation. The description of the exciton requires
treatment of the electron correlation beyond the ALDA.
The first-principles description of the excitons in the optical
absorption has been achieved by solving the Bethe–Salpeter
equation of many-body perturbation theory with the GW
approximation [25], density-functional theory (DFT) [23], and
TDDFT [24].

4. Response to intense and ultrashort laser pulse

We next discuss the response to intense laser pulses. In
figure 3, we show the electric fields of applied laser pulse
(blue dotted curves) and the total field inside the crystalline
solid (red solid curves) for several laser intensities. The
frequency and the pulse length of the laser pulse is chosen to be
common, 3.1 eV and 16 fs, respectively. The laser polarization
is set parallel to the 3-direction.

Figure 3. The applied electric field (blue dashed curves) and the total
electric field (red solid curves) are shown for laser pulses of different
peak intensities: (a) the maximum laser intensity
I = 5 × 1014 W cm−2, (b) I = 1 × 1015 W cm−2,
(c) I = 2.5 × 1015 W cm−2, and (d) I = 5 × 1015 W cm−2. The laser
pulse is applied to α-SiO2 with the polarization parallel to the
z-direction. The laser frequency is set 3.1 eV and the pulse length is
16 fs.

At low laser intensity (I = 5 × 1014 W cm−2), the
total electric field is almost proportional to the electric field
of the applied laser pulse. The ratio between two fields is
close to the static dielectric constant, 2.67 in our calculation.
Contrary to this case, the phase difference is observed between
the applied and the total electric fields at the laser intensity
of I = 1 × 1015 W cm−2 and higher. The occurrence of
the phase difference during the laser irradiation indicates a
rapid energy transfer from the laser pulse to the electrons
in the crystalline solid and is considered a signature of the
breakdown. We observed a similar phase difference in our
previous calculations for diamond. In that case, we also
observed a plasma oscillation of the excited electrons in the
conduction band and it continues even after the applied laser
pulse ends. In the present calculation for α-SiO2, however, we
have not observed such an oscillation of the excited electrons
after the applied laser pulse ended.

In figure 4, we show the number of excited electrons and
the energy transferred from the laser pulse to the electrons as
functions of time for a laser pulse of I = 2.5 × 1015 W cm−2.
The number of excited electrons (panel (b)) and the energy
transfer (panel (c)) clearly show that the appearance of the
phase difference between the applied laser pulse and the total
electric field is intimately related to the progress of electron
excitation.
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Figure 4. Electron dynamics in α-SiO2 under the peak intensity of
the pulse laser I = 2.5 × 1015 W cm−2, frequency h̄ω = 3.1 eV, and
pulse length 16 fs. The laser polarization is set parallel to the 3-axis.
(a) The applied and total electric fields, the same as figure 3(c).
(b) The number of electrons excited into conduction band as a
function of time. (c) The energy absorbed by the electrons as a
function of time.

We may make a simple argument for the occurrence
of the breakdown and critical number of excited electrons.
Since there is no bandgap for the electrons excited into the
conduction band, they can show a plasma oscillation. The
plasma frequency ωp may be estimated by

ωp =
(

4πnex

mε0

)1/2

, (6)

where nex is the number density of excited electrons in the
conduction band and ε0 is the static dielectric constant of α-
SiO2. If we evaluate the plasma frequency, putting the number
density of excited electrons shown in figure 4(b), we have
ωp � 5.62 eV. This value exceeds the frequency of the applied
laser pulse, 3.1 eV. We consider that this fact supports our
criterion for judging the occurrence of the optical breakdown
from the phase difference between the applied and the total
electric fields. Namely, the electrons excited into conduction
band start to add a metallic response to the dielectric function.
As the number of conduction electrons increases, the plasma
frequency also increases. Dielectric breakdown occurs when
the plasma frequency reaches the frequency of the applied
laser pulse. Then the metallic screening effect dominates in
the optical response and a substantial phase difference appears
between the applied and total electric fields.

Figure 5. The energy absorbed by the electrons is plotted as a
function of the peak laser intensity. The frequency and the pulse
length of the laser pulse is fixed at 3.1 eV and 16 fs, respectively. The
blue solid curve with filled circles shows the results for SiO2 while
the red dashed curve with filled squares shows the results for
diamond [13]. The green dotted line is δE ∝ C I 3, which implies
three-photon absorption, and black dot–dashed line is δE ∝ C ′ I 2,
which implies two-photon absorption. These two lines are
normalized so that they coincide with the value of a real-time
calculation at I = 5 × 1012 W cm−2.

Finally, we show the energy transferred from the laser
pulse to the electrons in a crystalline solid in figure 5. The
blue solid curve with circles indicates the present calculation,
while the red dashed curve with squares indicates our previous
calculation for diamond. In two calculations of the present α-
SiO2 and the previous diamond, we employ the laser pulse of
the same time profile. The straight dotted lines indicate the
three-photon absorption for α-SiO2 and the black dot–dashed
line indicates the two-photon absorption for diamond. Since
the bandgap for diamond in LDA is 4.8 eV, two photons are
required to excite the electrons across the bandgap. The direct
bandgap of α-SiO2 is 6.1 eV in our calculation. This means
that two-photon absorption could promote the excitation across
the bandgap. However, a good fit of the ∝I 3 line for the
calculated result in the low intensity region indicates that the
energy transfer from the laser pulse to the electrons proceeds
dominantly through three-photon absorption. The strength of
the electric field at the breakdown threshold, 1×1015 W cm−2,
roughly coincides with that in the material which binds valence
electrons to ions. We note that, at this laser intensity, the
nonlinear ionization mechanism such as the tunnel ionization
become substantial in atoms and molecules under intense laser
pulses.

In the case of diamond, an abrupt increase of the energy
transfer is observed at a laser strength of 7×1014 W cm−2. We
confirmed that this strength coincides with the occurrence of
the phase difference between the applied and the total electric
field. For α-SiO2, on the other hand, the energy transfer
shows a gradual decrease from the three-photon line and no
peculiar behavior is observed at the occurrence of the optical
breakdown. Further investigations are needed to understand
the different behaviors in α-SiO2 and diamond.

5. Summary

We have reported the first-principles calculations for optical
responses of α-SiO2 within the TDDFT with the real-time and

4



J. Phys.: Condens. Matter 21 (2009) 064224 T Otobe et al

real-space method. We first show the real-time calculation
of the dielectric function. Although exciton structures cannot
be described adequately within the ALDA, a reasonable
description is observed for an overall behavior of the dielectric
function. We then show the response to an intense and
ultrashort laser pulse. We have found that the phase difference
starts to appear at a laser intensity of I = 2.5 × 1015 W cm−2

between the applied laser pulse and the total electric field.
We regard the phase difference as a signature of dielectric
breakdown. Comparing the present result with our previous
calculation, the critical laser intensity for the breakdown of
α-SiO2 is about a factor of three higher than that for diamond.
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